Solving Task Scheduling Problem in Cloud Computing Environment Using Orthogonal Taguchi-Cat Algorithm

نویسندگان

  • Danlami Gabi
  • Abdul Samad Ismail
  • Anazida Zainal
  • Zalmiyah Zakaria
چکیده

Received Jan 9, 2017 Revised Mar 15, 2017 Accepted Apr 8, 2017 In cloud computing datacenter, task execution delay is no longer accidental. In recent times, a number of artificial intelligence scheduling techniques are proposed and applied to reduce task execution delay. In this study, we proposed an algorithm called Orthogonal Taguchi Based-Cat Swarm Optimization (OTB-CSO) to minimize total task execution time. In our proposed algorithm Taguchi Orthogonal approach was incorporated at CSO tracing mode for best task mapping on VMs with minimum execution time. The proposed algorithm was implemented on CloudSim tool and evaluated based on makespan metric. Experimental results showed for 20VMs used, proposed OTB-CSO was able to minimize makespan of total tasks scheduled across VMs with 42.86%, 34.57% and 2.58% improvement over Minimum and Maximum Job First (Min-Max), Particle Swarm Optimization with Linear Descending Inertia Weight (PSO-LDIW) and Hybrid Particle Swarm Optimization with Simulated Annealing (HPSO-SA) algorithms. Results obtained showed OTB-CSO is effective to optimize task scheduling and improve overall cloud computing performance with better system utilization. Keyword:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated modeling and solving the resource allocation problem and task scheduling in the cloud computing environment

Cloud computing is considered to be a new service provider technology for users and businesses. However, the cloud environment is facing a number of challenges. Resource allocation in a way that is optimum for users and cloud providers is difficult because of lack of data sharing between them. On the other hand, job scheduling is a basic issue and at the same time a big challenge in reaching hi...

متن کامل

An Effective Task Scheduling Framework for Cloud Computing using NSGA-II

Cloud computing is a model for convenient on-demand user’s access to changeable and configurable computing resources such as networks, servers, storage, applications, and services with minimal management of resources and service provider interaction. Task scheduling is regarded as a fundamental issue in cloud computing which aims at distributing the load on the different resources of a distribu...

متن کامل

Task Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing

The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...

متن کامل

GASA: Presentation of an Initiative Method Based on Genetic Algorithm for Task Scheduling in the Cloud Environment

The need for calculating actions has been emerged everywhere and in any time, by advancing of information technology. Cloud computing is the latest response to such needs. Prominent popularity has recently been created for Cloud computing systems. Increasing cloud efficiency is an important subject of consideration. Heterogeneity and diversity among different resources and requests of users in ...

متن کامل

Improving the palbimm scheduling algorithm for fault tolerance in cloud computing

Cloud computing is the latest technology that involves distributed computation over the Internet. It meets the needs of users through sharing resources and using virtual technology. The workflow user applications refer to a set of tasks to be processed within the cloud environment. Scheduling algorithms have a lot to do with the efficiency of cloud computing environments through selection of su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017